skip to main content


Search for: All records

Creators/Authors contains: "Vaishnav, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Trauma continues to be the leading cause of mortality and morbidity among US citizens aged <44 years. Literature suggests that geographical maldistribution of trauma centers (TCs) is associated with increasing fatality rate. Existing models for TC network design do not address the question often raised by trauma decision makers: how many TCs are required to achieve acceptable levels of mistriages? We propose a model to optimize the network of TCs under mistriage constraints. We propose a notional field triage protocol to estimate mistriages (under and over), based on existing guidelines in the trauma literature. Due to the complexity of the underlying model, we propose a Particle Swarm Optimization based solution approach. We use 2012 data from the State of Ohio, and model both ground and air transportation modes. Our results show that, for 2012 mistriage levels, it is possible to reduce the number of TCs from 21 to 10 by distributing them appropriately across urban and rural areas. Further, redistributing these 21 TCs can help satisfy the recommendation of under-triage ≤0.05 by the American College of Surgeons. In general, our study provides trauma decision makers an ability to determine a network that could improve care and/or reduce cost. 
    more » « less
  2. Trauma continues to be the leading cause of mortality and morbidity among US citizens aged <44 years. Literature suggests that geographical maldistribution of trauma centers (TCs) is associated with increasing fatality rate. Existing models for TC network design do not address the question often raised by trauma decision makers: how many TCs are required to achieve acceptable levels of mistriages? We propose a model to optimize the network of TCs under mistriage constraints. We propose a notional field triage protocol to estimate mistriages (under and over), based on existing guidelines in the trauma literature. Due to the complexity of the underlying model, we propose a Particle Swarm Optimization based solution approach. We use 2012 data from the State of Ohio, and model both ground and air transportation modes. Our results show that, for 2012 mistriage levels, it is possible to reduce the number of TCs from 21 to 10 by distributing them appropriately across urban and rural areas. Further, redistributing these 21 TCs can help satisfy the recommendation of under-triage ≤0.05 by the American College of Surgeons. In general, our study provides trauma decision makers an ability to determine a network that could improve care and/or reduce cost. 
    more » « less